89 research outputs found

    Modeling preference time in middle distance triathlons

    Full text link
    Modeling preference time in triathlons means predicting the intermediate times of particular sports disciplines by a given overall finish time in a specific triathlon course for the athlete with the known personal best result. This is a hard task for athletes and sport trainers due to a lot of different factors that need to be taken into account, e.g., athlete's abilities, health, mental preparations and even their current sports form. So far, this process was calculated manually without any specific software tools or using the artificial intelligence. This paper presents the new solution for modeling preference time in middle distance triathlons based on particle swarm optimization algorithm and archive of existing sports results. Initial results are presented, which suggest the usefulness of proposed approach, while remarks for future improvements and use are also emphasized.Comment: ISCBI 201

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201
    • …
    corecore